
Realizability of Collaboration-based Service Specifications

Humberto Nicolás Castejón, Rolv Bræk
Department of Telematics

Norwegian Univ. of Sci. and Tech., Norway
{humberto.castejon, rolv.braek}@item.ntnu.no

Gregor von Bochmann
School of Inf. Technology and Engineering

University of Ottawa, Ottawa, Canada
bochmann@site.uottawa.ca

Abstract

This paper is concerned with compositional specifi-
cation of services using UML 2 collaborations, activ-
ity and interaction diagrams. It addresses the problem
of realizability: given a global specification, can we
construct a set of communicating state machines whose
joint behavior is precisely the specified one? We ap-
proach the problem by looking at how collaboration be-
haviors may be composed using UML activity diagrams.
We classify realizability problems from the point of view
of each composition operator, and discuss their nature
and possible solutions. This brings a new look at al-
ready known problems: we show that given some condi-
tions, some problems can already be detected at an ab-
stract collaboration level, without needing to look into
detailed interactions.

1. Introduction

Service engineering is a challenging task. In many
cases, service behavior is not performed by a sin-
gle component, but by several distributed collaborating
components. This is referred to as thecrosscuttingna-
ture of services. By structuring according to compo-
nents, the behavior of each of them can be defined pre-
cisely and completely, while the behavior of a service
is fragmented. In order to model the global behavior of
a service more explicitly one needs an orthogonal view
where the collaborative behavior is in focus. Interaction
sequences such as MSCs and UML Sequence diagrams
[16] are commonly used for this purpose. Normally
when using interaction sequences it is very cumbersome
to define all the intended scenarios. In addition, there
are problems related to the realizability of interaction
scenarios, i.e. finding a set of local component behav-
iors whose joint execution leads precisely to the global
behavior specified in the scenarios. The realizability of
MSC-based specifications has been extensively studied

by different authors (e.g. [1, 17]). Conditions for realiz-
ability have been proposed for HMSCs [11] and Compo-
sitional MSCs [14], as well as restricted classes of HM-
SCs that are known to be always realizable [8]. Some
authors have studied pathologies in HMSCs [4, 10] that
prevent their realization. Other authors have considered
realizability notions that allow additional message con-
tents [3, 8].

A promising step forward is to adopt a collaboration-
oriented approach, where the main structuring units are
collaborations. In [6] we have shown the suitability
of UML 2 collaborations [16] for the specification of
services. Being both structural and behavioral classi-
fiers in UML 2, collaborations can be used to define
a service as a structure of roles with associated inter-
action behavior. Moreover, collaborations can be de-
composed into smaller sub-collaborations by means of
collaboration-uses (see Fig. 1(e)).Elementary collabo-
rations (i.e. collaborations that are not further decom-
posed into sub-collaborations) are often reusable and
simple enough to be completely specified using interac-
tion sequences. The overall behavior of a composite col-
laboration can then be specified as a “choreography” of
its sub-collaborations (i.e. a description of the execution
order or causality between the sub-collaborations). For
this we use UML Activity diagrams. While HMSCs de-
scribe collections of scenarios, and therefore represent
incomplete and existential behavior, our choreographies
describe the exact behavior of a service, according to the
designer’s intentions.

Interestingly, the choreography of sub-collaborations
enables us to understand and classify the underlying rea-
sons leading to realization problems. We say that a
choreography is directly realizable if the joint execution
of the local behaviors of all components – obtained in
a straightforward manner by applying the composition
ordering defined by the choreography to the local com-
ponent behaviors of the sub-collaborations – leads pre-
cisely to the global behavior specified by the choreog-
raphy. Note that some choreographies that are not di-

1



rectly realizable may still be realized by adding extra
coordination messages or additional data in messages.
We consider these measures as solutions to realization
problems, which could be adopted by the designer de-
pending on the application context and service domain.
Note also that the realizability of a choreography de-
pends not only on the ordering defined by the activity
diagram of the choreography, but also on the character-
istics of the underlying communication service used for
the transmission of messages. The communication ser-
vice is characterized by the type of transmission chan-
nels, and the type and number of input buffers of each
component. We assume there is no message loss, and
distinguish betweenasynchronouschannels without-of-
order delivery(i.e. order of transmitted messages may
not be preserved) and channels within-order delivery.
Components may have either a single input FIFO buffer
(i.e. one buffer for all received messages) or separate in-
put FIFO buffers (i.e. one buffer for messages received
from each different peer).

In the following sections we study the direct realiz-
ability of a choreography from the point of view of the
operators used to compose the sub-collaborations. In
our discussion we assume that each sub-collaboration
of a choreography is directly realizable. Then, for each
composition operator (i.e. sequential, alternative, paral-
lel, interruption) we study the problems that may lead to
difficulties of realization. We investigate the actual na-
ture of these problems and discuss possible solutions to
prevent or remedy them.

2. Sequential Composition

Sequential composition imposes a causal dependency
or partial order between the events of the composed sub-
collaborations. In the following the notions of strong
and weak sequential composition are discussed.

Strong Sequencing. Strong sequencing between two
collaborationsC1 andC2, writtenC1◦sC2, requiresC1 to
be completely finished, for all its components, beforeC2

can be initiated. It requires a direct precedence relation
between the terminating action(s) ofC1 and the initiating
action(s) ofC2, so that the latter can only happen after
the former are finished. This leads to the following:

Proposition 1. The strong sequential composition of
two directly realizable collaborations C1 and C2, C1 ◦s

C2, is directly realizable if all terminating actions of C1
and all initiating actions of C2 are located at the same
component.

The above proposition requiresC1 to terminate at the
component initiatingC2. This is the only way the ini-

tiator of C2 can know whenC1 is completely finished.
If this condition is not satisfied, coordination messages
must be added fromC1’s terminating components toC2’s
initiating components, in order to guarantee the strong
sequencing. This could be done automatically by a syn-
thesis algorithm [18].

Weak Sequencing. Weak sequencing of two sub-
collaborationsC1 andC2, writtenC1 ◦wC2, does not re-
quireC1 to be completely finished beforeC2 can be ini-
tiated. Any component can start participating inC2 as
soon as it has finished with C1 (without waiting for the
other components to finish as well). This means that the
actions in the two collaborations are sequenced on a per-
component basis. This is the sequential composition se-
mantics used in HMSCs and UML Interaction Overview
Diagrams, but not in UML activity diagrams. We there-
fore mark edges with a stereotype{weak}whenever we
want them to represent weak sequencing (see Fig. 1).
For the sake of illustration, we depict activities simply
as collaboration-uses. For each collaboration-use we in-
dicate theinitiating role (i.e. the role performing the
first action) by a dot and theterminating role(i.e. the
role performing the last action) by a bar.

Weak sequencing introduces a certain degree of con-
currency, since the executions of the composed collab-
orations may partially overlap. Although such concur-
rency may be desirable for performance or timing rea-
sons, it comes at a price, since it may lead to specifica-
tions that are not directly realizable and even counter-
intuitive. This is the case for the specification in Fig.
1(a). According to the weak sequence semantics, com-
ponentB may initiate collaborationC3 as soon as it has
finished withC1. As a result, collaborationsC2 and
C3 may be executed in any order in the realized sys-
tem. This is counter-intuitive to the specification, which
we assume reflects the designer’s intention (i.e. thatC3

should be executed afterC2, with some allowed overlap-
ping). If the designer’s intention was that the collabo-
rations be concurrently executed, this should rather be
explicitly specified by means of parallel composition.

To avoid the aforementioned problem, when two col-
laborations are composed in weak sequence the compo-
nent initiating the second collaboration should partici-
pate in the first collaboration (e.g. as in the composition
of C1 andC2 in Fig. 1(a)). We say a sequential compo-
sition with this property is weakly-causal:

Definition (weak-causality). The weak sequential
composition of two collaborations,C1 ◦wC2, is weakly-
causalif the initiator ofC2 participates inC1.

Weak-causality is a necessary condition for direct real-
izability of weak sequential composition. However, it is

2



(a)
(c)(b) (e)(d)

R1

a

R2 R4

sd Weakly Causal Composition

b

d

R3

e

C1

C2

c

C1
aC1 cC1

A B

C2
aC2 cC2

A B

{weak}

C1A B

C3B E

C2A D

{weak}

{weak}

C1R1 Rx

C2R1 R2

CnRm Rx

{weak}

m=n-1, n>2 (if channels with in-order delivery)

: Terminating role: Initiating role

C1

R2C2 C3

R1 Rx

CompositeCollaboration

Figure 1. Problematic weak sequential compositions

not strong enough to be a sufficient condition. For ex-
ample, consider the weak sequential composition ofC1

andC2 in Fig. 1(b). This composition is weakly-causal,
but it is not directly realizable. ComponentR1may ini-
tiate collaborationC2 just after sending messagea in C1.
Therefore, the actions inC1 that follow the sending of
messagea may overlap with those performed inC2 by
the same components. For example, messagee may be
received atR2 before messagec, or even before mes-
sagea. Obviously, this message reception order has not
been explicitly specified. We note that weak-causality is
enforced in the so-called local-HMSCs of [8].

In the literature about MSCs, the possibility that mes-
sages may be received in a different order from the one
specified is usually called arace condition [2]. In gen-
eral, race conditions can occur when a receiving event
is specified to happen before another event (i.e. either
receiving or sending), and both events are located on the
same component. The reason lies in the controllability
of events. While a component can always control when
its sending events should happen (e.g. it can wait for
one or more messages to be received before sending a
message), it cannot control the timing of its receiving
events. The occurrence of races highly depends on the
underlying communication service that is used. If no
assumption is made about the communication service,
races can only be prevented if all message transmissions
are strongly sequenced. This condition might be quite
restrictive. We now present a less restrictive condition
that does not prevent all races, but reduces their num-
ber and facilitates their detection, compared with weak-
causality. This condition, which we callsend-causality,
requires all sending events to be ordered, except those
that have been explicitly specified (with parallel compo-
sition) to happen concurrently.

Definition (send-causal composition). C1 ◦w C2 is
send-causalif (1) C1 andC2 are send-causal (see defi-
nition below), and (2) the component initiatingC2 is the
one that performs either the last sending event ofC1 or

the receiving event corresponding to that sending event1.

Definition (send-causal elementary collaboration).
An elementary collaboration issend-causalif it can be
decomposed into a choreography of sub-collaborations,
each of them consisting of exactly one message, where
all sequential compositions in the choreography are
send-causal.

It can be shown (see [5]) that when send-causality is
enforced, races may only occur between two or more
consecutive receiving events (i.e. not between a sending
event and a receiving event).

Proposition 2. In a send-causal composition, race con-
ditions may only exist between two or more consecutive
receiving events.

Corollary 1. A send-causal composition is directly re-
alizable over a communication service with in-order de-
livery and separate input buffers.

One of our motivations is to provide guidelines for
constructing specifications with as few conflicts as pos-
sible and whose intuitive interpretation corresponds to
the behavior allowed by the underlying semantics. We
therefore propose, as a general specification guideline,
that all elementary collaborations be send-causal. Weak
sequencing of collaborations should also be send-causal,
unless there is a good reason to relax this requirement.
In the following we assume that all elementary collabo-
rations are send-causal.

A potentialrace condition exists between two weakly
sequenced collaborations,C1 ◦wC2, if there is a compo-
nent that participates in both collaborations and plays
roles whose executions may partially overlap. Due to
Proposition 2, if the sequencing is send-causal this may
only happen when the role that the component plays in
C1 ends with a message reception (i.e. it is a terminating

1For the sake of simplicity, we assume here that each sub-
collaboration has only a single initiating event and a single last sending
event, but the definition could be easily generalized to consider multi-
ple ones.

3



role) and the role it plays inC2 starts with another mes-
sage reception (i.e. it is a non-initiating role). Whether
a potential race condition is anactual race or not de-
pends on the underlying communication service, and on
whether messages are received from the same or from
different components. For example, in Fig. 1(c) a po-
tential race condition exists at componentB between the
receptions of the last message inC1 and the first message
in C2, but it is only actual in the case of out-of-order de-
livery.

We note that race conditions may not only appear be-
tweendirectlycomposed collaborations (e.g. Fig. 1(c)),
but also betweenindirectlycomposed ones, as shown in
Fig. 1(d). In this specification it is the weak sequencing
betweenC1 andC2 that makes the potential race between
C1 andCn possible. We therefore say that there isindi-
rect weak sequencingbetweenC1 andCn. This “prop-
agation” of weak sequencing makes it more difficult to
avoid races.

We have the following result:

Proposition 3. Thesend-causalweak sequential com-
position of a set of directly-realizable collaborations is
directly realizable

• over a communication service within-order deliv-
ery if the following condition is satisfied: if a com-
ponent plays a terminating role in a collaboration
C1 followed by a non-initiating role in another col-
laboration Cn, then the last message it receives in
C1 and the first one it receives in Cn are sent by the
same peer-components; or

• over a communication service without-of-order de-
livery only if no component plays a terminating role
followed by a non-initiating role.

Working with binary collaborations we can easily
know which component sends the first and last messages
of a collaboration, if we know which components play
the initiating and terminating roles. Due to Proposition
3, actual races can then be detected at an early specifi-
cation stage, when the detailed behavior of each collab-
oration has not yet been specified, but only the selection
of their initiating and terminating roles has been done.
In the case of n-ary collaborations, we can perform the
same early analysis, but only potential races can be dis-
covered.

One interesting aspect of the specification with col-
laborations is that we can get information about po-
tential races from the diagram describing the structural
composition of collaborations (see e.g. Fig. 1(e)). In
such diagram we can see whether a component partic-
ipates in several collaborations, and whether it plays at
least one terminating and one non-initiating role in them.

If that is the case, a potential race exists. This infor-
mation could then be used to direct the analysis of the
behavioral specification (i.e. the choreography).

Resolution of Race Conditions. Race conditions can
be resolved in several ways. Some authors [13, 7] have
proposed mechanisms to automatically eliminate race
conditions by means of synchronization messages. We
note that when the send-causality property is satisfied,
the synchronization message should be used to trans-
form the weak sequencing leading to the race into strong
sequencing. If synchronization messages are added in
other places new races may be introduced.

Other authors (e.g. [12, 14]) tackle the resolution of
race conditions at the design and implementation levels.
They differentiate between the reception and consump-
tion of messages. This distinction allows messages to
be consumed in an order determined by the receiving
component, independently of their arrival order. We call
this message reordering for consumption. In general,
this reordering may be implemented by first keeping all
received messages in a (unordered) pool of messages.
When the behavior of the component expects the re-
ception of one or a set of alternative messages, it waits
until one of these messages is available in the message
pool. Khendek et al. [12] use the SDL Save construct to
specify such message reordering. This technique can be
used to resolve races between messages received from
the same source (i.e. in the case of channels with out-of-
order delivery), as well as races between messages re-
ceived from different sources. In the latter case, a com-
munication service with separate input buffers would
also resolve the races. Finally, races may also be re-
solved if an explicit consumption of messages in all pos-
sible orders is implemented (i.e. similar to co-regions in
MSCs).

We believe that the resolution of races heavily de-
pends on the specific application domain and require-
ments, as well as on the context in which they happen.
In some cases the addition of synchronization messages
is not an option, and a race has to be resolved by re-
ordering for consumption. In other cases, such as when
races lead to race propagation problems (see Section 3)
a strict order between receptions is required, so compo-
nents should be synchronized by extra messages. At any
rate, all race conditions should be brought to the atten-
tion of the designer once discovered. She could then de-
cide, first, whether the detected race entails a real prob-
lem(e.g. in Fig. 1(d) there is no race if all channels have
the same latency). Then, she could decide whetherre-
ordering for consumption is acceptable or synchroniza-
tion messages need to be added or the specification has
to be revised.

4



Loops. Loops can be used to describe the repeated ex-
ecution of a (composite) collaboration, which we call
the body collaboration. A loop can therefore be seen as
a shortcut for strong or weak sequential composition of
several executions of the same body collaboration. This
means that the rules for strong/weak sequencing must be
applied. We note that all executions of a loop involve the
same set of components (the weak-causality property is
thus always satisfied). This fact makes the chances for
races high when weak sequencing is used. Strong se-
quencing should therefore be preferred for loop bodies
in the general case.

Loops may give rise to so-calledprocess diver-
gence[4], characterized by a component sending an un-
bounded number of messages ahead of the receiving
component. This may happen if the communication be-
tween any two of the participants in the body collabora-
tion is unidirectional.

As we will see in the next section, loops may also
affect the realizability of choices.

3. Alternative Composition

Alternative composition is specified by means of
choice operators, and describes alternatives between dif-
ferent execution paths. In a choice one or morechoosing
components decide the alternative of the choice to be ex-
ecuted, based on the (implicit or explicit) conditions as-
sociated with the alternatives. The othernon-choosing
components involved in the choice follow the decision
made by the choosing components (i.e. execute the al-
ternative chosen by the latter). It is thus important that:

1. The choosing components, if several, agree on
the alternative to be executed. We call this the
decision-making process.

2. The decision of the choosing components is cor-
rectly propagated to the non-choosing components.
We call this thechoice-propagation process.

In the following we study how each of these aspects af-
fect the realizability of a choice. We assume that the
set of choosing components is the union of the initiating
components of all the choice alternatives.

3.1. Decision-making Process

The intuitive interpretation of a choice is that only
one of the alternative behaviors is to be eventually ex-
ecuted. Deciding which alternative to be executed be-
comes simple if there is only one choosing component,
and the conditions for the alternatives are local to that
component (i.e. they are expressed in terms of locally

(a)

disc2A Bdisc1A B

inviteA B

(b)

A B

invite

disc1

invite

disc2

Figure 2. (a) Non-local choice and (b) im-
plied behavior

observable predicates). Choices with this property are
called local. It is easy to see that local choices are re-
alizable (up to the decision-making process), since the
decision is made by a single component based only on
its local knowledge.

The decision-making process gets complicated when
there is more than one choosing component. This is the
case in the choice of Fig. 2(a), where there are two
choosing components, namelyA andB. From a global
perspective, we may think that once the decision node
is reached, either component A initiates collaboration
disc1 with B, or componentB initiates collaboration
disc2with A. We are assuming then that there is an im-
plicitly synchronization betweenA andB, which allows
them to agree on the alternative to be executed. How-
ever, in a directly realized system, componentsA andB
will not be able to synchronize and they may decide to
initiate both collaborations simultaneously.

Choices involving more than one choosing compo-
nent are usually callednon-local choices[4]. They
are normally considered as pathologies that can lead to
misunderstanding and unspecified behaviors, and algo-
rithms have been proposed to detect them in the context
of HMSCs (e.g. [4, 10]). Despite the extensive attention
they have received, there is no consensus on how they
should be treated. We believe this is due to a lack of
understanding of their nature. Some authors (e.g. [4])
consider them as the result of an underspecification and
suggest their elimination. This is done by introducing
explicit coordination, as a refinement step towards the
design. Other authors look at non-local choices as an
obstacle for realizability and propose a restricted version
of HMSCs, calledlocal HMSCs[11, 8], that are always
realizable. These HMSCs forbid non-local choices. Fi-
nally, there are authors [9, 15] that consider non-local
choices to be almost inevitable in the specification of
distributed systems with autonomous processes. They
propose to address them at the implementation level,
and propose a generic implementation approach for non-
local choices.

The problem with non-local choices is the existence
of severaluncoordinatedcomponents that have the pos-

5



sibility to make an independent decision in the directly
realized system. As a solution, we may think of making
the choice local by coordinating these components (i.e.
either with additional messages or with additional mes-
sage contents), so that they make a common decision.
Such coordination may however not be feasible in all
contexts and application domains. Consider, for exam-
ple, the specification of a communication service where
both end-users can take the initiative to disconnect. This
could be specified as a non-local choice between two
disconnection collaborations, each of them initiated by
a different component (see Fig. 2(a)). The decision
made by any of the components to initiate one of the
disconnection collaborations is not totally controlled by
that component, but it is triggered by the respective end-
user. It therefore makes little sense to coordinate the
components in order to obtain a local choice, since this
would imply the coordination of the end-users’ initia-
tives. Such non-local choice is simply unavoidable.

We refer to non-local choices where the coordi-
nation of the choosing components is not feasible as
competing-initiatives choices. A characteristic of them
is that all the alternative collaborations become simul-
taneously enabled, and they are triggered by events that
cannot be controlled by the initiating components, such
as an end-user initiative or a time-out. As a result, the al-
ternative collaborations cannot be prevented from being
simultaneously triggered. If this happens, it should be
detected as soon as possible and the choice correctly re-
solved by means of a proper conflict resolution. Any
component involved in two or more alternatives may
be potentially used to detect the initiative conflict and
initiate the resolution. For such components, the com-
peting initiatives reveal themselves in the components’
role sequences as choices between an initiating and a
non-initiating role, or between two non-initiating roles
played in collaborations with different peers.

A side effect of competing-initiatives choices is the
existence oforphan messages. Consider again the spec-
ification in Fig. 2(a), which describes the repetitive exe-
cution of collaborationinvite followed by eitherdisc1or
disc2. Now imagine that each collaboration consists of
only one message. The scenario in Fig. 2(b) is then pos-
sible, where messagedisc2 is sent as a response to the
first invite message, but it is received byA after having
sent the secondinvite. ComponentA may then consume
disc2as a response to the secondinvitemessage, leading
to an undesired behavior. What happens is that the con-
versation (i.e. exchange of messages) includingdisc2is
finished while this message is still in the system (i.e. not
consumed). Messagedisc2 thus becomes orphan, with
the danger of being consumed in a later occurrence of
the same conversation. This can be avoided by mark-

ing messages (e.g. with a session id), so they are only
consumed within the right collaboration instance.

Competing-initiatives choices correspond to the non-
local choices discussed by Gouda et al. [9] and Mooij
et al. [15]. These authors propose some resolution
approaches. In the domain of communication proto-
cols, Gouda et al. [9] propose a resolution approach
for two competing alternatives (i.e. two choosing com-
ponents), which gives different priorities to the alterna-
tives. Once a conflict is detected, the alternative with
lowest priority is abandoned. With motivation from a
different domain, where Gouda’s approach is not satis-
factory, Mooij et al. [15] propose a resolution technique
that executes the alternatives in sequential order (accord-
ing to their priorities), and is valid for more than two
choosing components. We conclude that the resolution
approach to be implemented depends on the specific ap-
plication domain. We therefore envision a catalog of do-
main specific resolution patterns from which a designer
may choose the one that better fits the necessities of her
system. We note that any potential resolution should
also address the problem of orphan messages, which is
not considered in either [9] or [15].

3.2. Choice-propagation Process

The fact that a choice is local does not guarantee its
realizability. The decision made by the choosing com-
ponent must be properly propagated to the non-choosing
components, in order for them to execute the right al-
ternative. In each alternative, the behavior of a non-
choosing component begins with the reception of a se-
quence of messages, which we call thetriggering trace.
Thereafter, the component may send and receive other
messages. It is the triggering traces that enable a non-
choosing component to determine the alternative chosen
by the choosing component. In some cases, however,
a non-choosing component may not be able to deter-
mine the decision made by the choosing component. As
an example, we consider the local choice in Fig. 3(a).
For the componentR3, the triggering traces for both al-
ternatives are the same (i.e. the reception of message
x). Therefore, upon reception ofx, R3 cannot deter-
mine whetherR1decided to execute collaborationC1 or
C2. That is,R1’s decision is ambiguously propagated to
R3. We say a choice has anambiguous propagationif
there is a non-choosing component for which the trigger-
ing tracesspecifiedin two alternatives have a common
prefix. Note that according to this definition, triggering
traces such as (?x,?y) and (?x,?z) cause ambiguous prop-
agation. This is true in any direct realization, since the
choice cannot be made immediately after?x. An easy
solution in this case would be to delay the choice (i.e.

6



R1
a

R2 R3

x
b

R1
c

R2 R3

x
d

R1 R2 R3

b c
d

a
R1 R2 R3

fg

c

R1 R2 R3

b c

a
f

(a)

(c)(b)

e

g

C1 C2

C1 C2

Figure 3. (a) Non-deterministic and (b)
Race choice propagation; (c) Behavior im-
plied by (b)

extract?x from the choice). Choices with ambiguous
propagation are not directly realizable. They are similar
to the non-deterministic choices defined in [14].

Now consider the choice in Fig. 3(b). It is a local
choice and, according to the triggering traces specified
for any of the two non-choosing components, the propa-
gation should not be ambiguous. Still, this choice is not
directly realizable. A race condition between messages
a andc in C1 may lead to the scenario of Fig. 3(c), where
R1 andR2 executeC1, while R3 executesC2. This ex-
ample shows that in the presence of race conditions the
triggering traceobservedby a non-choosing component
may differ from the specified one. Therefore, whenever
race conditions may appear in any of the alternatives,
we need to consider the potentially observable triggering
traces in the analysis of choice propagation (e.g. (?a, ?c)
and (?c, ?a) forR3 in collaborationC1 – Fig. 3(b)). We
say a choice has arace propagationif there is ambigu-
ous propagation due to races. Choices with race propa-
gation are not directly realizable. They are similar to the
race choices defined in [14].

To resolve the problem of race propagation we need
to eliminate the race(s) that lead to it. However, if we try
to remove the race conditions by means of message re-
ordering for consumption (e.g. by means of separate in-
put buffers), the race propagation problem may still per-
sist. This is because, in general, a component would not
be able to determine whether a received message should
be immediately consumed as part of one alternative, or
be kept for later consumption in another alternative (e.g.
race propagation in Fig. 3(b) cannot be solved with sep-
arate input buffers). To make the message reordering
work, we need to mark the messages with the collab-
oration instance2 they belong to [18]. This not only

2If the choice is part of the body of a loop, an iteration number
should be considered.

avoids race propagation, but also ambiguous propaga-
tion in general. In [8] the realizability of local-HMSCs
is studied. Although choice propagation is not explic-
itly discussed, the authors propose marking all messages
(i.e. not only those involved in a race propagation) as
we have just explained. Components have thus to check
the data carried byall messages, and decide whether to
consume them or not. We believe this unnecessarily in-
creases the amount of processing needed upon message
reception. We prefer to detect the cases of race propa-
gation and remove the underlying race condition(s) ei-
ther by transforming the responsible weak sequencing
into strong sequencing, or by marking only the involved
messages and applying message reordering to them.

Unfortunately, neither ambiguous nor race choice
propagation can be detected at the collaboration level3,
we need to consider the detailed behavior of the sub-
collaborations involved in the choice.

Choices without ambiguous or race propagation are
said to haveproper decision propagation. These
choices are directly realizable.

4. Interruption

The interruption semantics requires a collaboration
C be interrupted once another preempting collaboration
Cint is initiated. In a distributed asynchronous system
the interruption may take some time to propagate to
all participants in the interrupted collaboration. This
means that certain components may still proceed exe-
cuting their behavior inC for some time afterCint has
been initiated.

As competing-initiatives choices, interruption com-
positions suffer from a problem of initiatives (from
the interrupted and the interrupting collaborations) that
compete with each other. They are therefore not directly
realizable, in the general case. However, with interrup-
tions the existence of competing initiatives is visible.
The detection is thus easy at the choreography level.
We refer to Section 3.1 for a discussion on resolution
of competing initiatives situations and related problems.

5. Parallel Composition

A parallel composition is directly realizable as long
as the composed collaborations are completely indepen-
dent (i.e. their executions do not interfere with each
other). Unfortunately, sometimes there are implicit de-
pendencies that may lead to unspecified behaviors. This
is the case if a component participates in several con-
current collaborations that use the same message types.

3We may detect the existence of a race at the collaboration level,
but could not determine if that race affects the propagation.

7



Messages belonging to one collaboration may then be
consumed within a different collaboration.

Implicit dependencies may also exist through shared
resources. In this case, appropriate coordination has to
be added between the collaborations, which will nor-
mally be service-specific. In [6] we discussed the auto-
matic detection of interactions, due to shared resources,
between concurrent instances of the same composite
service collaboration. This detection approach makes
use of pre- and post-conditions associated with sub-
collaborations, and could also be used to detect interac-
tions between collaborations composed in parallel with
forks.

6. Conclusions

We have studied the realizability of service speci-
fications given aschoreographiesof elementary sub-
collaborations. A choreography describes the execution
order of service sub-collaborations by means of an ac-
tivity diagram.

The realizability problem has already been discussed
for MSC-based specifications, where a number of spec-
ification pathologies have been identified and some
“generic” resolutions proposed. We have studied such
pathologies, and their solutions, from the point of view
of the composition operators used in a choreography:
weak and strong sequence, alternative, interruption and
parallel.

The result of our study is a better understanding of
the actual nature of realizability problems. Not surpris-
ingly, we have seen that implicit concurrency and com-
peting initiatives are at the heart of most problems. The
send-causality property identified in this paper helps to
build specifications that are more intuitive and less prone
to conflicts, since it forces concurrency to be explicitly
specified (i.e. by means of parallel composition or in-
terruption). We have shown that some problems can
already be detected at an abstract collaboration level,
without needing to look into detailed interactions. We
have also shown that generic solutions to the discussed
problems are not valid. The same type of problem may
require different resolutions in different contexts.

In [5] we present a set of algorithms for the detec-
tion of the problems discussed in this paper. We are cur-
rently working on their implementation. As future work
we plan to investigate interaction patterns and domain-
specific solutions to the problems we have discussed.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Realizability
and verification of MSC graphs.Theor. Comput. Sci.,

331(1):97–114, 2005.
[2] R. Alur, G. J. Holzmann, and D. Peled. An analyzer

for message sequence charts.Software - Concepts and
Tools, 17(2):70–77, 1996.

[3] N. Baudru and R. Morin. Safe implementability of reg-
ular message sequence chart specifications. InACIS 4th
Intl. Conf. on Soft. Eng., Artificial Intelligence, Network-
ing and Parallel/Distr. Comp. (SNPD’03), 2003.

[4] H. Ben-Abdallah and S. Leue. Syntactic detection of
process divergence and non-local choice in message se-
quence charts. In2nd Int. WS on Tools and Algs. for the
Construction and Analysis of Sys. (TACAS’97), 1997.

[5] H. N. Castejón, G. Bochmann, and R. Bræk. Investigat-
ing the realizability of collaboration-based service spec-
ifications. Technical report, Avantel 3/2007 ISSN 1503-
4097, NTNU, 2007.

[6] H. N. Castejón and R. Bræk. Formalizing collaboration
goal sequences for service choreography. In26th Intl.
Conf. on Formal Methods for Networked and Distr. Sys.
(FORTE’06), volume 4229 ofLNCS. Springer, 2006.

[7] C.-A. Chen, S. Kalvala, and J. Sinclair. Race conditions
in message sequence charts. In3rd Asian Symposium
on Programming Languages and Systems (APLAS’05),
volume 3780 ofLNCS. Springer, 2005.

[8] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun.
Infinite-state high-level mscs: Model-checking and re-
alizability. J. Comput. Syst. Sci., 72(4):617–647, 2006.

[9] M. G. Gouda and Y.-T. Yu. Synthesis of communicating
finite state machines with guaranteed progress.IEEE
Trans. on Commun., Com-32(7):779–788, July 1984.

[10] L. Hélouët. Some pathological message sequence charts,
and how to detect them. In10th Intl. SDL Forum, volume
2078 ofLNCS. Springer, 2001.

[11] L. Hélouët and C. Jard. Conditions for synthesis of com-
municating automata from HMSCs. In5th Intl. Work-
shop on Formal Methods for Industrial Critical Systems
(FMICS’00). GMD FOKUS, 2000.

[12] F. Khendek and X. J. Zhang. From MSC to SDL:
Overview and an application to the autonomous shuttle
transport system. InDagstuhl Workshop on Scenarios:
Models, Transformations and Tools, 2003.

[13] B. Mitchell. Resolving race conditions in asynchronous
partial order scenarios. IEEE Trans. Softw. Eng.,
31(9):767–784, 2005.

[14] A. Mooij, J. Romijn, and W. Wesselink. Realizabil-
ity criteria for compositional MSC. In11th Intl. Conf.
on Algebraic Methodology and Software Technology
(AMAST’06), volume 4019 ofLNCS. Springer, 2006.

[15] A. J. Mooij, N. Goga, and J. Romijn. Non-local choice
and beyond: Intricacies of MSC choice nodes. InFun-
damental Approaches to Soft. Eng. (FASE’05), 2005.

[16] OMG. UML 2.1.1 Superstructure Spec., February 2007.
[17] S. Uchitel, J. Kramer, and J. Magee. Incremental elab-

oration of scenario-based specifications and behavior
models using implied scenarios.ACM Trans. Softw. Eng.
Methodol., 13(1):37–85, 2004.

[18] G. von Bochmann and R. Gotzhein. Deriving protocol
specifications from service specifications. InACM SIG-
COMM Symposium, 1986.

8


